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A theoretical and experimental study is presented of the longitudinal propagation of 
disturbances in an unstably stratified fluid layer, especially those generated by periodic 
temperature fluctuations at  a side boundary. The most important characteristics of the 
waves at both supercritical Rsyleigh numbers, in the presence of steady roll-like cells, 
and subcritical Rayleigh numbers are determined. 

1. Introduction 
Wave propagation of int'errelated thermal and hydrodynamic (thermoconvective) 

disturbances is a simplified example of the complex thermoconvective processes in 
non-isentropic fluids being investigated in meteorology and oceanography. 

It is a known fact that in the case of an unstably st,ratified fluid layer the hydro- 
dynamic equat,ions in the classical approximat'ion of an ideal fluid do not allow wave 
solutions. Luikov & Berkovsky ( 1  969a, 1970) were the first to  point out the existence 
of weakly damped warns in an unstably stratified larer of a viscous heat-conducting 
fluid (i.e. AIL 4 1 ,  where h is the mavelengtjh and L is the damping length), and called 
these waves t hermoconvectire waves (TCW) . The existence of TCM' has been confirmed 
experimentally (Barkov, Berkorsky Rr Fertman 1974). The characteristics of TCW in 
fluids with peculiar properties (i.e. viscoelast'ic, ferromagnetic or electrically con- 
ducting fluids) in both a gravity force field and magnetic and electric fields have been 
investigated by ~t number of aut,hors (Luikov & Berkovsky 19698; Gupta & Gupta 
1973; Berkorsky, Bashtovoi & Lipkina 1970; Takashima 1972a,b).  In  all this work 
TCW have been studied theoretically by employing idealized one-dimensional mathe- 
matical models in which t8he effects of boundaries and convective motion in the layer 
are ignored. 

The corresponding problem of the propagation of internal gravity waves (IGW) in 
a stably stratified fluid, where riscosity and heat conduction are taken into account, 
has been studied by LeBlond (1966), Golitsin (1965). Gershuni & Zhukhovitsky (1972), 
Giterman & Shteinberg (1973), Thomas & Stevenson (1973) and Sinitsyn &' Fertman 
(1976). 

Thus thermoconvective disturbances may propagate either as IGW (stably stratified 
fluid) or as TCW (unstably stratified fluid). Although TCW and ZGW are described by 
the same equations, they have a different physical nature. While a necessary condition 
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FIGURE 1 .  Section of the horizontal fluid layer. 

for the propagation of IGW is the presence of a restoring force (stably stratified fluid), 
viscosity and heat conduction leading only to damping of the waves, for the propaga- 
tion of TCW the simultaneous effect of viscosity and heat conduction in the case of an 
unstably stratified fluid is of primary importance. 

A thorough investigation of the mechanism of propagating TCW and their main 
characteristics will help to clarify the development of unsteady-state flows in a non- 
isothermal fluid. 

In accordance with the problem stated, an analysis is carried out of the linearized 
problem of the propagation of small amplitude waves in a layer with free boundaries. 
This allows determination of a region with TCW, their spectral composition and their 
main characteristics ( 3  3). Numerical calculation by a network method allowing for 
nonlinear effects reveals the mechanism of TCW propagation in the presence of steady 
convection cells in the layer ( 3  4). In 3 5 a set-up for laboratory experiments on TCWr 
propagation is described. 

2. Statement of the problem 
A plane horizontal layer of thickness h is considered. The upper and lower boundaries 

of the layer are maintained at  temperatures TI and T,, respectively. The solution to the 
problem is sought in a plane finite region which is a vertical cross-section of the layer 
(figure l),  the region’s length being 1. External disturbances are introduced at the 
vertical boundary at  x = 0 and are assumed to be periodic oscillations in the tempera- 
ture. Let us consider the propagation of these disturbances through the layer in the 
x direction. The mathematical formulation of the problem is based on the ordinary 
equations of natural convection in the Boussinesq approximation. In dimensionless 
form the equations may be written in terms of the stream function +, the vorticity 4 
and the temperature 0 as 
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The boundary conditions for the temperature are 

Two types of boundary conditions for the velocity are used. 
( a )  Rigid horizontal boundaries: 

( b )  Free horizontal boundaries: 

Here Gr = /3gh3(A,+ lyhl)/v2, a Grashof number; Pr = v/a, a Prandtl number; 
a = yh/(A,+ lyhl)) a, dimensionless parameter which characterizes the ratio between 
the amplitude A, of the temperature oscillations at the boundaries and the vertical 
temperature drop in the layer yh; 0 < a < 1; y is the constant vertica,l temperature 
gradient; v is the fluid viscosity; a is the thermal diffusivity; ,5 = -p-l ap/aT, a thermal 
expansion coefficient; g is the gravitational acceleration; w is the frequency; p is the 
fluid density. The following quantities are chosen as characteristic values: h for 
distances, v/h for velocities, h2/v for times and A ,  + lyh[ for temperatures. 

Along with (1)-(3), the linearized system which governs the propagation of small 
amplitude waves is considered: 

In this case the boundary conditions for 0 are written as 

@[,=,,, = Olz=l/h = 0, 01,=, = &(I-- (a[)sinnysinwt. (9) 

Equations (7)  and (8) are obtained from (1)-(4) by substituting the solution 
0 = a( 1 - y) + O’, $ = $‘ and neglecting terms of second order. Here 0’ and $‘ are 
small disturbances and we have dropped the primes. Estimates have shown that the 
linear approximation (7) and (8) is valid for both subcritical and small supercritical 
Rayleigh numbers when the intensity of convective motion is not great. 

The choice of the dependence sinny in the boundary conditions (4) and (9) is 
explained by the fact that this mode corresponds to the smallest decrease in perturba- 
tion damping. 

3. Propagation of small amplitude thermoconvective disturbances through 

For a qualitative analysis of wave propagation of thermoconvective disturbances, 
we shall consider small wave amplitudes and low rates of motion in a layer when the 
linear approximation (7)  and (8) is valid. With the boundary condition (6), the problem 
may be solved analytically. Consider a semi-infinite layer (1  -+ CO). 

a layer with free boundaries 
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FIGURE 2. Characteristics of temperature waves in an isothermal fluid layer. ( I )  A. (2) 6. (3) L. 
_ _ _  , characteristics of a one-dimensional wave. 

I n  the case of an isothermal layer (TI = T2, cx = 0) the temperature equation (8) is 
independent of the velocity since the convective terms are of second order. An exact 
solution has been obtained for a temperature wave excited by periodic temperature 
oscillations of the vertical boundary and also for the convective motion which arises 
in the layer. An analysis of the solution obtained has revealed that the isothermal 
boundaries of the layer essentially affect the characteristics of the temperature wave 
compared with the one-dimensional problem (Carslaw & Jaeger 1964, p. 70): the 
logarithmic decrement S, = 27r Im K/Re K and the wavelength h = 27r/Re K are 
increased ( K  = wavenumber). The damping length of the wave L = In 10/ImK, the 
distance over which the waves propagate, will be determined as the distance x a t  which 
the amplitude of the disturbances propagating through the layer becomes less than 
one-tenth of the amplitude at the vertical boundary. Then the damping length is 
always smaller than three-quarters of the thickness of Che layer (figure 2) .  In  fact, this 
is a periodic rather than a wave process. Convective motion is localized near a side 
boundary as a single convective cell, which periodically changes its direction with the 
frequency of the temperature oscillations a t  the side boundary. At a distance of 
x = 1.5 h the velocity and temperature amplitudes attenuate in approximately in 100 
periods. 

For a layer with a vertical temperature gradient equations ( 7 )  and (8) are coupled. 
I n  this case the solution to  the problem is sought as a plane wave 

{@,$} = {@,,~,}sinny exp[i(wt-Kx)]. (10) 

The dispersion equation is a bicubic polynomial with respect t o  the wavenumber K 
(Chandrasekhar 1961, p. 24): 

(iPrw + K2 + n2) (iw + K 2  + n2) ( K 2  + n2) - K2Ra = 0, (11)  
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where Ra = GrPra is the Rayleigh number. The frequency o is assumed t o  be a 
specified real quantity equal to  the frequency of the temperature oscillations at the 
side boundary x = 0. Three of the roots of (1 I ) ,  K,, K ,  and K3, say, are consistent with 
the condition for attenuation of the waves a t  infinity ( I m K j  < 0). The excited wave 
may thus be expressed as a superposition of three harmonics: 

3 3 

i=1 j=l 
0 = sinnyIm C c,exp[i(wt-Kix)], r$ = sin7ry.Im C ~ ~ $ ~ ~ e x p [ i ( w t - K ~ x ) ] ,  

The complex coefficients ci describe the energy which is spent on the excitation of 
each of the harmonics. They are found from the conditions at the vertical boundary, 
which give 3 3 3 

C cj = 1 - / a / ,  C $ o i ~ j  = 0, C Kj$-,cj = 0. (13) 
j=1 j=l j=1 

The roots of the polynomial, the characteristics of the waves and the coefficients c j  have 
been calculated on a computer. 

It should be noted that in the case of finite 1 all six roots of ( 1  1)  are used t o  build up 
the solution and the expansion (12) contains six unknown coefficients. Additional 
equations for the three extra coefficients are found from the conditions at  the boundary 
(Drazin 1975). 

I n  the case of stable stratification (heating from above, a < 0, Ru < 0) the amplitudes 
of two of the harmonics in (12) are damped by a factor of more than 500 in a distance of 
the order of the thickness ( L 4  h )  a t  any Ra, Pr and w .  Under the conditions given 
below the third harmonic is weakly damped compared with the other two. It pene- 
trates to  a greater depth and has a small decrement 13, 4 1. 

Thus in the range x > h the wave (12) is described by one weakly damped harmonic 
and is represented by an internal gravity wave in a viscous heat-conducting fluid. I n  
the limit of vanishing viscosity and heat conduction this wave turns into an undamped 
IGW in an ideal fluid layer. I n  order t o  study the dependence of the properties of the 
IGW on the oscillation frequency a t  the boundary, the roots of dispersion equation ( 13) 
have been calculated. The parabolic method was used to  find all the complex roots of 
the polynomial. The relative error amounts t o  1 yo. The calculations were performed 
in a frequency range 1 < w 6 1 O3 with a uniform logarithmic network. As is shown by 
calculations with viscosity and heat conduction taken into account, there is an 
‘optimal’ oscillation frequency w* for the range of Ru and Pr considered, a t  which 
IGW are excited with a minimal logarithmic decrement. An analysis of the numerical 
results indicates that this optimal frequency is approximately equal t o  half the Brunt- 
Vaisala frequency: w* 2 0.5( / Ral/Pr)*. The optimal frequency is determined approxi- 
mately from a plot of S(w) and the uncertainty in its determination is therefore about, 
10 yo since no special search for the minimum has been performed. The wavelength for 
the optimal frequency is about 3.75h and does not depend on Ra and Pr.t Theminimal 
decrement of IGW decreases as the absolute Rayleigh number grows (figure 3) .As has 
been demonstrated by an analysis of the coefficients cj, the energy associated with a 
weakly damped wave is within 15 yo of the total energy of generation, the remaining 
portion being spent on excitation of two strongly damped harmonics. Thus, in a stably 

shown that, in fact, w* - (lRaj/BPr)fr and h N 4h as lRal + CO. 

An asymptotic analysis of ( 1  3) carried out by Dr P. G. Daniels (private communication) has 
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FIGURE 3. IGW characteristics in EL layer with free boundaries. 
---, A. __ , 6. Pr = 1 .  (1) Ra = lo4. (2) Ra = lo5. (3) Ra = loe. 

stratified layer, an internal weakly damped gravity wave propagates over the range of 
rather large negative Rayleigh numbers Ra 6 - lo5 if the frequency of the source is 
close to half the Brunt-Vaisala frequency. 

Basically different waves propagate in an unstably stratified layer (heating from 
below, a > 0 ,  Ra > 0). Contrary to IGW, viscosity and heat conduction must be taken 
into account in their description and a force restoring a fluid particle to equilibrium is 
absent. An analysis of the roots of the dispersion equation (1 1)  has revealed that in the 
wave (12) one harmonic is always damped by a factor of more than 1000 at  a distance 
smaller than the layer thickness h, the two others penetrating t o  a large depth ( L  B h)  
and having a small decrement at  Rayleigh numbers close to the critical value R* which 
corresponds to the onset of mechanical instability of a horizontal fluid layer (R* = 657 
for a layer with free boundaries). To summarize, in the case of unstable stratification 
weakly damped'waves, called thermoconvective waves, propagate. It is found that the 
region of weak attenuation of TCW is determined by critical or supercritical Rayleigh 
numbers (Ra 3 8") and small frequencies (w < lo-,). The logarithmic decrement of 
TCW at such frequencies changes sharply near the boundary of stable mechanical 
pyuilibrium. The superposition af the two weakly damped harmonics at  x > h is 
recognized as a complex travelling wave with a sinusoidal amplitude: 

] (14) 
0 = 0-65(1- lal)exp[ImK,z]sinny sin(wt-Z,x) sin (&x-[), 
I, = +(Reh',+Reh',), I, = $(ReK,-ReK,), = constant. 

Here K ,  and K ,  are the wavenumbers of the weakly damped harmonics in (12); 
Im h', = Im I?,. The most important characteristics of the wave are presented in 
figure 4. The wavelength h = 2n/4 is of the order of 10h or larger. The periodicity of the 
amplitude may be attributed to periodic convective motion over the layer with period 
of the order of the layer thickness (curve 5). 
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FICXJRE 4. TCW characteristics in a, layer with free boundaries. Pr = 1.0. ( l ) ,  (2) Wavelength 
h = 2z7/ll with w = 0.01, 1. (3), (4) Damping decrement S = 2n Im K J l 1  with w = 0.01, 1. 
( 5 )  Amplitude period d = z 7 / 1 2 .  

4. Propagation of thermoconvective disturbances of finite amplitude 
A n  analysis of the above solutions of the linearized problem has demonstrated that 

the effect of weak damping of TCW should be most pronounced for supercritical 
Rayleigh numbers Ra > R*, for which a linear approximation does not hold. 
A numerical simulation on a computer has been made in order to investigste theoreti- 
cally TCW in a layer a t  supercritical Rayleigh numbers. The calculations have been 
performed by the network method under the boundary conditions (5). The network 
region was taken as a long rectangle (Z/h = 5-15) to  eliminate the effect of the rear wall. 
Equations (1)-(3) were approximated by a system of finite-difference equations. 
A monotonic conservative scheme of variable directions with second-order of accuracy 
with an automatic choice of a time step was employed (Nogotov & Sinitsyn 1975). The 
calculations were made on a uniform network with steps Ax = Ay = & till the onset of 
steady periodic oscillations, after which the wave characterist,ics were taken. The phase 
characteristics of the waves were found from the propagation rate of a maximal tem- 
perature disturbance along the layer. An amplitude ciirve of the wave is calculated from 

A,(x) = max @(x, 0.5, t )  - min @(x, 0.5, t ) ,  t E [tl, t, + 27r /o] .  

The Rayleigh number range considered (0 < Ra < lo5) covers the propagatmion of TCW 
both against the background of a layer in mechanical equilibrium and in the presence 
of natural convection. The Prandtl number was taken to  be equal to  unity and thc 
dimensionless frequency w ranged between 0.5 and 10. This frequency range was chosen 
because calculations for small w (w < @I) ,  where the effect of weak damping of TCR is 
expected, require much computer time. Oscillaticn amplitudes of the source A, = lyhl, 

4 I yhl and I yhl, corresponding to 01 = 4, 3 and $, were considered. 
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FIGURE 5. The shape of the TCW amplitude curve in a layer with rigid boundaries. 
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FIGURE 6 .  A plot of the damping length of TCW 2's. the Eayleigh number.: 
0) = 0.5. ( 1 )  a = 0.8. (2) a = 0.5. (3) a = 3 .  (4) a = 0. 

I n  an isothermal layer (a  = 0, Ra = 0) the temperature disturbances decay with 
distance x at  a high rate (figures 5 and 6). It has been established that for the frequency 
range under consideration the ef€ectt of G'r on the propagation of temperature disturb- 
ances is significant only for Gr > 2500. A t  Gr < 2500 the propagation of temperature 
waves through a fluid is virtually the same as for a solid material as predicted by the 
linear theory. An analysis of the amplitude curve .4, for Gr > 2500 has demonstrated 
that near a vertical boundary where temperature modulation occurs temperature 
disturbances are damped at a higher rate compared with a solid material. 

For a lager with a negative vertical temperature gradient, the propagation of 
disturbances is basically different: a number of peculiar alternating maxima and 
minima appear on the amplitude curve (figure 5) and the damping length is noticeably 
larger (figures 6 and 7 ) .  

The character of TCW propagation in the subcritical Rayleigh number range 
appears to  be in good agreement with linear theory [see (IS)] .  The influence of a finite 
amplitude manifests itself in the fact that, as it increases, a greater portion of the 



Thermal disturbances in a JEuid layer 181 

0 1 ' 3 . 1 5 6  7 x  

FIGURE 7. A plot of the damping Iengt,h of TCW 218. the  frequency. 
LY = +. (1) Ra = lo4. ( 2 )  Ra = 2500. (3) Ra = 1700. 

w 

energy is spent on a strongly damped harmonic and nonlinear effects are exhibited 
near a vertical boundary. 

I n  the supercritical range Ra 2 R* an appreciable increase in the osvillation ampli- 
tude along the layer is observed (figure 5 ) .  The disturbances propagate against the 
background of developed periodic convection owing to displacement of convective 
cells or t o  changes in their rate of rotation. A set of convective cells possesses a kind of 
'elasticity ', i.e. there is a restoring force which causes the disturbance to  be transferred 
along the layer in the form of a wave. Three regimes of wave generation are possible, 
depending on the amplitude and frequency of the oscillations excited. 

( a )  I n  regime i an additional cell is periodically formed at the vertical boundary 
x = 0 and results in a region of compressed cells propagating along the layer. 

( b )  I n  regime 2 retardation and disappearance of the boundary cell lead to  a region 
of expanded cells. 

(c) I n  regime 3 a wave is generated without additional formation or disappearance 
of a boundary cell owing to periodic changes in the rate of convective motion. 

The damping length of TCW depends essentially on which regime occurs. Regime 2 
is most effective; regime 3 has the lowest efficiency. The bends in the curves in figure 6 
may be explained by changes in the mechanism of TCW propagation. The damping 
length increases considerably with the Rayleigh number near the stability boundary. 
I n  the supercritical range L is strongly dependent on the frequency (figure 7) .  The 
damping length becomes significantly smaller as the Prandtl number increases 
(figure 8). The wavelength h in the supercritical range depends on the distance between 
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FIGURE 8. A plot of the damping length of TCW 08. the Prmdtl number. 
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FIGURE 9. A plot of the TCW wavelength vus. the frequency. 
01 = 3. (1 )  Ra = 1700. (2) Ra = 2500. (3)  Ra = lo4. 

the centres of the neighbouring regions of compressed or expanded cells. For Ra 2 2500 
it  depends on the frequency w only slightly (figure 9).  

The propagation of thermoconvective disturbances with finite amplitudes has been 
studied experimentally in the laboratory. The experimental set-up is described in the 
following section. 
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5. Experimental set-up 
The experiments were carried out on a horizontal layer (150 x 50 x 10.2 mm) of air 

(Pr - 1) uniformly heated from below and bounded by rigid walls (Z/h = 14.7). 
A copper plate with a nichrome heater constituted the lower boundary of the layer. 
The upper boundary was a heat exchanger consisting of glued Plexiglas sheets with 
water of controlled temperature circulating between them. The temperature behaviour 
was studied over the range 0 < R a  < 104. 

Periodic temperature oscillations at one of the vertical boundaries were produced by 
water which passed through a thermostat and was then pumped through a copper 
pipe of diameter 5 mm glued into the short side wall. The temperature variations of the 
water in the thermostat followed a certain law that determined the temperature 
behaviour of the vertical boundary. For periodic modulation of the temperature the 
electric heater of the thermostat was fed through a relay controlled by the signals 
from two contact thermometers installed in the thermostat and set for extremum 
temperature variations. The flow rate of water through the cooling coil of the thermo- 
stat was thereby maintained constant with the aid of a special unit. I n  this way the 
temperature modulation at the vertical boundary was kept close to  a sinusoidal 
modulation with a circular frequency w = 6 x 10-l to  6 x 10-3(10-1 t o  10-3rad/s). 

The temperature modulation was maintained a t  the mean temperature level in the 
layer for each temperature regime, which was controlled within an accuracy of 
-+ 0.1 "C. 

The system of temperature measurements involved ( a )  measuring the temperatures 
of the horizontal boundaries, ( b )  recording the modulating temperature a t  the side 
wall and (c )  recording the temperature oscillations within the layer. The temperature 
distributions over the horizontal boundaries of the layer were measured by 24 copper- 
constantan thermocouples, the diameter of the wires being 0.1 mm. I n  all the runs 
deviations from the mean temperature of the wall were within 2 yo. The temperature 
modulations at the vertical boundary were measured by five copper-constantan 
thermocouples uniformly glued over the wall height. A comb of three copper-con- 
stantan thermocouples with wire diameter 0-05mm was used t o  register local tem- 
peratures in the layer. The comb was moved by a micrometer screw. The thermocouple 
readings were recorded on a multi-point potentiometer, which simultaneously 
measured the modulated temperature of the vertical boundary. 

Visualization and photography of the structure of the convective motion were 
performed through the upper transparent heat exchanger. The convective structures 
were visualized with the aid of aerosol particles (tobacco smoke), which produced a 
clear flow pattern when illuminated by a helium-neon laser. Employing a special 
electromagnetic device, the beam was scanned over the width Qf the cavity with a 
frequency of 50 Hz at any horizontal section of the layer. 

6. Discussion of the results and comparison with the predictions 
Consider the propagation of temperature oscillations under isothermal conditions 

(with the horizontal boundaries of the layer maintained a t  the same temperature). 
As shown by the amplitude curves (figure lo) ,  the amplitude of the temperature 
oscillations over a half-height of the layer decreases rapidly as the distance from the 
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FIGURE 10. Attenuation of temperature oscillations under isothermal conditions. (1) A ,  = 
exp (-nh-%). (2) A ,  = 15 "C, w = 0.2. 0,  A ,  = 15 "C, w = 0-2; @, A ,  = 15 "C, w = 0.2. 

vertical boundary with moddated temperature increases. For a frequency of 
temperature oscillations w 2 lO-l, the temperature oscillations along the layer are 
damped in the same manner as in a solid of height h = 10-2mm (ordinary temperature 
waves). In thlc case the decrease in the amplitude of the temperature wave along the 
solid is described by the expression A ,  = exp ( - ~ h - ~ x )  (curve I) .  Because of the lower 
frequency of the temperature modulation, curve 2 (the amplitude curve obtained 
numerically) departs frop curve 1.  When the temperatnre distribution at  the vertical 
boundary is not linear, convective motion arises naturally. For a high frequency 
modulation the rate of convective motion appears to be so small that the motion has 
no effect on the propagation of temperature oscillations, which therefore travel in the 
same manner as in a solid under isothernial conditions. 

As the frequency of the temperature oscillations decreases, the convective motion 
at the vertical boundary becomes periodic in time, the rotation of a convective cell 
continually changing its direction with a period equal to tthat of the temperature 
oscillations at the vertical boundary. Sharper attenuation of temperature oscillations 
near the vertical boundary is caused by heat transfer from the side wall to the hori- 
zontal boundaries of the layer. 

Propagation of disturbances in a non-isothermal layer with a vertical tempera- 
ture gradient at  Ra < 1300 follows the same pattern as that at isothermal condi- 
tions. 

As the Rayleigh number increases in the subcritical range, the amplitude curve 
exhibits a number of alternating maxima and minima associated with the convective 
structures due to  the temperature disturbances (figure 11). The number of peaks in the 
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FIGURE 11. Tho s h a p  of the TCW amplitude curve in tho 
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amplitude curve depends on the vertical temperature gradient. The solid line in the 
figure shows the numorical results; experimental data are represented by circles. 

The structure of the Convective motion in the layer under supercritical heating 
controls the propagation of temperature disturbances from the wall. When the vertical 
temperature drop has reached its critical value for the present layer height, steady- 
state convection exists in the layer in the form of hexagonal cells which are stable a t  
Rayleigh numbers not exceeding Ra E 2500 (figure 12a, plate 1). In  the region with 
Ra = 2500 elongation of the cells in the transverse direction is observed (figure 12 b, 
plate 1 ) .  With a further increase in the temperature drop rolls with axes parallel t o  the 
short side boundary of the layer are formed. Such a structure appeared to  be stable in 
the range of supercritical Rayleigh numbers studied and to  be preferred in narrow 
rectangular layers (Davis 1967). This transition from cellular t o  roll-like convection 
has been predicted theoretically for an infinite horizontal layer by Palm, Ellingsen & 
Gjevik (1967) and obtained experimentally for a layer with finite dimensions by 
Koschmieder (1966). Cfineration of temperature disturbances a t  a side boundary leads 
to  a periodic variation in the structure of the convective motion. I n  one half of each 
period an additional convective roll is formed near the side boundary with modulated 
temperature and the region of compressed rolls propagates along the layer. In  the next 
half-period of the temperature modulations the former convective structure is 
restored. Thus transmission of temperature disturbances is carried out by displacement 
of convective structures through generation of an additional roll. This corresponds to 
regime 1 of the generation of a thermoconvective wave observed in the numerical 
experiments. The temperature amplitudes at all points of the layer increase con- 
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FIGURE 13. Amplitude curves of TCW in the supercritical range. 
-, Ra = 1500; 0, Ra = 1660. 

siderably with distance (figure 13). The solid line in this figure shows the numerical 
results. It is probably because a coarse net was used in the calculations (Ax = .',), 
which results in a considerable error, that the numerical (w = 0.45) and experimental 
(w = 0.18) results coincide. The broken line connectsexperimental pointsfor Ra = 3400 
and w = 0.012. The characteristics of TCW in the supercritical range are determined by 
the frequency of the temperature oscillation rather than by the Rayleigh number. As 
has been demonstrated experimentally, at sufficiently low frequencies at the vertical 
boundary (w - intensification of the temperature oscillations is possible: the 
amplitudes of the temperature oscillations in the layer exceed those at  the vertical 
boundary. 

The thermoconvective wavelength is determined experimentally from the phase 
shift between the temperature oscillations in the layer and at  the vertical boundary. 
In  the subcritical range the wavelength is found to  be - 30-70 h and inversely pro- 
portional to  a frequency of the temperature oscillations. It is evident that in this 
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FIGURE 14. A plot of the TCW wavelength vs. the Rayleigh number. 
-, numerical calculation; 0, w = 0.45; 0 ,  w = 6 x 

situation the phase velocity is independent of the frequencg of the temperature 
oscillations over the range investigated. At the same time the rate of the thermo- 
convective wme propagation depends essentially on the vertical temperature drop in 
the layer and decreases as this grows. In the subcritical range the rate of propagation 
of TCW is - 2 x 

Figure 14 is a plot ofthe TCW wavelength h vs. the Rayleigh number. The numerical 
results for w = 0.5 are depicted as a solid curve. The weak dependence of h on the 
Rayleigh number for Ra > 2500 is verified experimentally. 

The damping factor Im K determines the decrease in the TCW amplitude along the 
layer. A plot of I m K  vs. the Rayleigh number is presented in figure 15. The solid line 
represents the numerical results. Experimental data are shown as circles. A sharp 
decrease in TCW damping at  the critical Rayleigh number may be seen clearly. 

It should be emphasized that in the supercritical range dispersion has been observed. 
The propagation of thermoconvective disturbances should therefore be characterized 
by a group velocity of 10-3-10-2 m/s. 

to 8 x 10-3m/s. 
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FIGURE 15. A plot of the damping factor 278. the Rayleigh number. 

Figure 16 shows simultaneous records of the temperature modulation at the half- 
height & the side boundary and the temperature oscillations in the layer. At the 
system exit, (the air layer being heated from below) a signal is sent. in a form close to 
triangular. In  the layer a temperature change close to harmonic is registered. A Fourier 
analysis of the temperature oscillations has shown that the spectral composition of a 
temperature signal changes as it propagates along the layer. The amplitudes of the 
higher harmonics of the exit signal, which are initially 3 0  N 0-lA,  and 5w N 0.05 A,,, 
decrease considerably with distance from the side boundary. Thus, for the signal at a 
point x/h = 4.6, the amplitude of the harmonic 3 w equals approximately 0.03 A ,  and 
that of the harmonic 5 w approximately 0.01 A,. It is natural that with decreasing 
frequency the damping length of thermooonvective waves increases and the damping 
decrement decreases. 
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FIGURE 16. Simultaneous temperature records. 0 ,  at the side boundary; 
0, x , in the layer. (a )  x = 4.6. (b) .r = 6-8. 

7. Conclusions 
A general investigation has been made of a particular mechanism of wave propa- 

gation of interrelated thermal and hydrodynamic disturbances in horizontal unstably 
stratified layers of viscous heat-conducting fluid. A thorough investigation of this 
mechanism appears to be of interest from both the theoretical and the experimental 
point of view. 

It seems reasonable that further investigations of TCW should study : 
( a )  TCW propagating near the threshold of oscillatory instability of convective 

(b) TCW with combined forced and natural convection; 
(c) TCW in fluids with peculiar properties, particularly electrically conducting and 

motion ; 

ferromagnetic fluids. 
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( c )  

FIGURE 12. Variation of strnctura of convectivo mot,ion in i t  cavity 
with increasing Rayleigh riiimber. 
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